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In	 macromolecular	 simulation	 it	 is	 often	 necessary	 to	 compute	 the	 gradient	 of	 internal	 energy	 with	 respect	 to	 the	
Cartesian	coordinates	(this	is	necessary,	for	example,	in	minimization	and	molecular	dynamics).	Most	force	fields	define	
energy	as	a	function	of	internal	degrees	of	freedom	–	that	is,	distances,	angles	and	dihedral	angles	between	atoms.	The	
functional	forms	of	the	energy	terms	are	usually	quite	simple	and	their	derivatives	are	trivial.	Thus,	the	most	important	
component	 is	 computing	 partial	 derivatives	 of	 the	 internal	 degrees	 of	 freedom	 (i.e.	 distances,	 angles	 and	 dihedral	
angles).	 This	 can	be	 a	 bit	 awkward,	 especially	 for	 angles,	 because	 internal	 coordinates	 and	Cartesian	 coordinates	 are	
related	 by	 non-remarkable	 linear	 algebraic	 operations.	 Here	 I	 demonstrate	 the	 mathematical	 formulae,	 and	 their	
derivations,	involved	in	computing	these	derivatives.	

	

Distance	

The	distance	between	points	𝑝" = 𝑥", 𝑦", 𝑧" 	and	𝑝( = 𝑥(, 𝑦(, 𝑧( 	is	𝐷 = 𝑥" − 𝑥( ( + 𝑦" − 𝑦( ( + 𝑧" − 𝑧( (.	The	
derivative	of	this	distance	with	respect	to	say	𝑥"	(all	coordinates	are	symmetrical	here,	so	all	three	derivatives	will	have	

the	same	form),	is	𝜕𝐷 𝜕𝑥" =
"

( -./-0 01 2./20 01 3./30 0 ∙ 2 𝑥" − 𝑥( = -./-0
-./-0 01 2./20 01 3./30 0.	Obviously,	there	is	

a	problem	when	the	two	atoms	are	exactly	at	the	same	point	because	both	the	numerator	and	the	denominator	become	
zero.	Even	though	this	is	certainly	a	case	to	avoid	in	actual	atomic	structures,	the	code	should	still	not	quit	with	an	error	
or	 produce	 incorrect	 derivatives	 if	 this	 happens.	 It	 easy	 to	 show	 that	 if	 𝑦" = 𝑦(	 and	 𝑧" = 𝑧(,	 then	 the	 limit	 of	 the	
derivative	above	as	𝑥" → 𝑥(	is	±1,	where	the	sign	depends	on	whether	the	approach	is	from	the	positive	direction	(𝑥" >
𝑥()	or	the	negative	direction	(𝑥" < 𝑥().	In	other	words,	all	partial	derivatives	at	𝑟 = 0,0,0 	are	±1	(and	it	makes	sense	
that	 if	 two	 atoms	 coincide,	 then	 the	 change	 in	 each	 coordinate	 is	 also	 the	 change	 in	 distance	 to	within	 a	 sign,	 since	
distance	is	always	positive),	so	this	can	be	handled	as	a	special	case	in	the	code.	In	the	code,	 if	𝑥"	 is	really	exactly	the	
same	as	𝑥(	(to	within	machine	precision),	we	just	have	to	choose	a	sign	in	some	arbitrary	way	(e.g.	choose	the	plus	sign).	

	

Angle	

Suppose	we	want	to	find	the	angle	between	two	vectors:	𝑟" = 𝑎", 𝑏", 𝑐" 	and	𝑟( = 𝑎(, 𝑏(, 𝑐( .	This	can	be	computed	as	

the	arccosine	of	the	normalized	dot	product	between	the	two	vectors,	or	𝐴 = 𝑐𝑜𝑠/" A.A01B.B01C.C0

A.01B.01C.0 A001B001C00
.	Taking	the	

derivative	 of	 this,	 say	with	 respect	 to	𝑎",	we	 get	
DE
DA.

= − "
"/F0

𝑎( ∙ 𝑎"( + 𝑏"( + 𝑐"( 𝑎(( + 𝑏(( + 𝑐(( − 𝑎"𝑎( + 𝑏"𝑏( +

𝑐"𝑐( ∙
A001B001C00

A.01B.01C.0
∙ 𝑎" ∙ "

A.01B.01C.0 A001B001C00
	(for	shortness,	I	used	𝑑	for	the	argument	of	the	arccosine).	It	is	not	hard	to	

see	that	when	the	two	vectors	are	collinear	(their	normalized	dot	product	is	1),	this	derivative	too	will	have	a	numerical	
problem	 because	 both	 the	 numerator	 and	 the	 denominator	 will	 be	 zero.	 The	 entire	 set	 of	 derivatives	 is:	

𝜕𝐴
𝜕𝑎"

= −
1

1 − 𝑑(
𝑎(𝐿"𝐿( − 𝑝

𝐿(
𝐿"
𝑎" ∙

1
𝐿"(𝐿((

	

𝜕𝐴
𝜕𝑎(

= −
1

1 − 𝑑(
𝑎"𝐿"𝐿( − 𝑝

𝐿"
𝐿(
𝑎( ∙

1
𝐿"(𝐿((
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𝜕𝐴
𝜕𝑏"

= −
1

1 − 𝑑(
𝑏(𝐿"𝐿( − 𝑝

𝐿(
𝐿"
𝑏" ∙

1
𝐿"(𝐿((

	

𝜕𝐴
𝜕𝑏(

= −
1

1 − 𝑑(
𝑏"𝐿"𝐿( − 𝑝

𝐿"
𝐿(
𝑏( ∙

1
𝐿"(𝐿((

	

𝜕𝐴
𝜕𝑐"

= −
1

1 − 𝑑(
𝑐(𝐿"𝐿( − 𝑝

𝐿(
𝐿"
𝑐" ∙

1
𝐿"(𝐿((

	

𝜕𝐴
𝜕𝑐(

= −
1

1 − 𝑑(
𝑐"𝐿"𝐿( − 𝑝

𝐿"
𝐿(
𝑐( ∙

1
𝐿"(𝐿((

	

where	 for	shortness	 I	defined	the	 following	quantities:	𝐿" = 𝑎"( + 𝑏"( + 𝑐"(,	𝐿( = 𝑎(( + 𝑏(( + 𝑐((,	𝑝 = 𝑎"𝑎( + 𝑏"𝑏( +
𝑐"𝑐(,	and	𝑑 =

J
K.K0

.	Now,	supposed	that	the	angle	is	defined	by	three	points	𝑝" = 𝑥", 𝑦", 𝑧" ,	𝑝( = 𝑥(, 𝑦(, 𝑧( ,	and	𝑝L =

𝑥L, 𝑦L, 𝑧L ,	instead	of	two	vectors,	and	it	is	necessary	to	find	the	derivative	of	the	angle	with	respect	to	the	coordinates	
of	the	points.	In	that	case,	we	note	that	the	vectors	above	relate	to	the	three	points	as	𝑟" = 𝑎" = 𝑥" − 𝑥(;	𝑏" = 𝑦" −
𝑦(;	𝑐" = 𝑧" − 𝑧( 	 and	 𝑟( = 𝑎( = 𝑥L − 𝑥(;	𝑏( = 𝑦L − 𝑦(;	𝑐( = 𝑧L − 𝑧( .	 Therefore,	 the	 angle	 becomes:	 𝐴 =

𝑐𝑜𝑠/" -./-0 -O/-0 1 2./20 2O/20 1 3./30 3O/30
-./-0 01 2./20 01 3./30 0 -O/-0 01 2O/20 01 3O/30 0 ,	and	its	derivatives	with	respect	to	the	coordinates	of	the	

three	 points:	
𝜕𝐴
𝜕𝑥"

= −
1

1 − 𝑑(
𝑥L − 𝑥( 𝐿"𝐿( − 𝑝

𝐿(
𝐿"

𝑥" − 𝑥( ∙
1

𝐿"(𝐿((
	

𝜕𝐴
𝜕𝑦"

= −
1

1 − 𝑑(
𝑦L − 𝑦( 𝐿"𝐿( − 𝑝

𝐿(
𝐿"

𝑦" − 𝑦( ∙
1

𝐿"(𝐿((
	

𝜕𝐴
𝜕𝑧"

= −
1

1 − 𝑑(
𝑧L − 𝑧( 𝐿"𝐿( − 𝑝

𝐿(
𝐿"

𝑧" − 𝑧( ∙
1

𝐿"(𝐿((
	

𝜕𝐴
𝜕𝑥L

= −
1

1 − 𝑑(
𝑥" − 𝑥( 𝐿"𝐿( − 𝑝

𝐿"
𝐿(

𝑥L − 𝑥( ∙
1

𝐿"(𝐿((
	

𝜕𝐴
𝜕𝑦L

= −
1

1 − 𝑑(
𝑦" − 𝑦( 𝐿"𝐿( − 𝑝

𝐿"
𝐿(

𝑦L − 𝑦( ∙
1

𝐿"(𝐿((
	

𝜕𝐴
𝜕𝑧L

= −
1

1 − 𝑑(
𝑧" − 𝑧( 𝐿"𝐿( − 𝑝

𝐿"
𝐿(

𝑧L − 𝑧( ∙
1

𝐿"(𝐿((
	

𝜕𝐴
𝜕𝑥(

= −
1

1 − 𝑑(
2𝑥( − 𝑥" − 𝑥L 𝐿"𝐿( + 𝑝

𝐿(
𝐿"

𝑥" − 𝑥( +
𝐿"
𝐿(

𝑥L − 𝑥( ∙
1

𝐿"(𝐿((
	

𝜕𝐴
𝜕𝑥(

= −
1

1 − 𝑑(
2𝑥( − 𝑥" − 𝑥L 𝐿"𝐿( + 𝑝

𝐿(
𝐿"

𝑥" − 𝑥( +
𝐿"
𝐿(

𝑥L − 𝑥( ∙
1

𝐿"(𝐿((
	

𝜕𝐴
𝜕𝑧(

= −
1

1 − 𝑑(
2𝑧( − 𝑧" − 𝑧L 𝐿"𝐿( + 𝑝

𝐿(
𝐿"

𝑧" − 𝑧( +
𝐿"
𝐿(

𝑧L − 𝑧( ∙
1

𝐿"(𝐿((
	

where	𝐿",	𝐿(,	𝑝	and	𝑑	are	defined	as	before,	except	now	they	will	be	written	in	terms	of	the	coordinates	of	the	points.	
Note	 that	 the	 derivates	 with	 respect	 to	 the	 coordinates	 of	 the	 central	 point	 are	 merely	 the	 negative	 sum	 of	 the	
corresponding	 derivatives	with	 respect	 to	 the	 coordinates	 of	 terminal	 points,	 which	makes	 perfect	 geometric	 sense.	
Here	 again	 we	 have	 a	 singularity	 issue	 –	 when	 the	 angle	 is	 0	 or	 180	 (that	 is	𝑑( = 1),	 both	 the	 numerator	 and	 the	
denominator	of	the	derivatives	go	to	zero,	making	it	impossible	to	determine	the	derivatives	with	the	formulae	above.	
The	derivative	itself	must	exist,	however,	for	geometric	reasons	and	we	can	always	compute	it	numerically	at	any	point.	
Before,	with	distance,	we	 took	 the	 limit	of	 the	derivative	as	 the	singularity	point	 is	approached.	Here,	we	can	do	 the	
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same,	but	that	turns	out	to	be	pretty	hairy.	 Instead,	we	will	apply	a	simple	geometric	argument	akin	to	the	argument	
regarding	distance	that	the	differential	of	coordinate	is	also	the	differential	of	distance	when	distance	is	zero.	Lets	look	
at	the	case	where	the	angle	is	nearly	0.	Then,	the	angle	is	the	length	of	the	arc	connecting	the	ends	of	unit	vectors	along	
𝑟"	 and	𝑟(,	which	 is	 also	 approximately	 the	 distance	 between	 the	 ends	 of	 these	 unit	 vectors	 (and	 this	 becomes	 exact	
when	the	angle	approaches	zero).	Given	that	the	angle	is	zero,	if	one	coordinate	of	point	𝑝"	or	𝑝L	changes	(say	it	is	𝑝")	
by	 some	 d,	 then	 the	 position	 of	 the	 end	 point	 of	 𝑟"	 changes	 by	 the	 same	 d,	 this	 translates	 into	 a	 change	 in	 this	

coordinate	of	the	end	of	one	of	the	unit	vector	 P.
P.
	by	an	amount	 Q

P.
,	and	the	component	of	this	 latter	change	that	 is	

orthogonal	to	the	direction	of	𝑟"	 is	also	the	change	 in	distance	between	 	𝑝"	and	𝑝L	 (to	within	a	sign,	since	distance	 is	
always	positive),	and	also	the	change	 in	arc	 length	and	hence	angle.	The	amount	of	change	of	each	coordinate	that	 is	
orthogonal	to	𝑟"	and	𝑟(	 is	determined	by	the	angle	b,	which	is	p/2	minus	the	angle	between	the	axis	corresponding	to	

the	 coordinate	 and	 𝑟"	 (or	 𝑟(,	 which	 is	 the	 same).	 Thus,	 for	 the	 x-coordinate,	 𝛽- =
S
(
− 𝑎𝑛𝑔𝑙𝑒 𝑋, 𝑟" = S

(
−

𝑎𝑟𝑐𝑐𝑜𝑠 ",Y,Y ∙P.
P.

= S
(
− 𝑎𝑟𝑐𝑐𝑜𝑠 P.Z

P.
,	 where	 𝑟"-	 is	 the	 x-component	 of	 𝑟".	 The	 same	 can	 be	 done	 for	 y-	 and	 z-

coordinates.	The	cosine	of	 the	appropriate	b,	divided	by	 the	magnitude	of	 the	vector,	 is	 then	 the	component	of	 that	
coordinate’s	delta	that	is	orthogonal	to	the	vectors.	Thus,	for	the	coordinates	of	points	𝑝"	and	𝑝L,	when	the	angle	is	very	
close	to	zero,	the	derivatives	of	the	angle	can	be	written	as:	

𝜕𝐴
𝜕𝑥"

= ±
cos β`
𝑟(

= ±
1
𝑟(

cos
𝜋
2
− 𝑎𝑟𝑐𝑐𝑜𝑠

𝑟(-

𝑟(
= ±

1
𝑟(

sin 𝑎𝑟𝑐𝑐𝑜𝑠
𝑟(-

𝑟(
	

𝜕𝐴
𝜕𝑦"

= ±
cos βd
𝑟(

= ±
1
𝑟(

cos
𝜋
2
− 𝑎𝑟𝑐𝑐𝑜𝑠

𝑟(
2

𝑟(
= ±

1
𝑟(

sin 𝑎𝑟𝑐𝑐𝑜𝑠
𝑟(
2

𝑟(
	

𝜕𝐴
𝜕𝑧"

= ±
cos βe
𝑟(

= ±
1
𝑟(

cos
𝜋
2
− 𝑎𝑟𝑐𝑐𝑜𝑠

𝑟(3

𝑟(
= ±

1
𝑟(

sin 𝑎𝑟𝑐𝑐𝑜𝑠
𝑟(3

𝑟(
	

𝜕𝐴
𝜕𝑥L

= ±
cos β`
𝑟"

= ±
1
𝑟"
cos

𝜋
2
− 𝑎𝑟𝑐𝑐𝑜𝑠

𝑟"-

𝑟"
= ∓

1
𝑟"
sin 𝑎𝑟𝑐𝑐𝑜𝑠

𝑟"-

𝑟"
	

𝜕𝐴
𝜕𝑦L

= ±
cos βd
𝑟"

= ±
1
𝑟"
cos

𝜋
2
− 𝑎𝑟𝑐𝑐𝑜𝑠

𝑟"
2

𝑟"
= ∓

1
𝑟"
sin 𝑎𝑟𝑐𝑐𝑜𝑠

𝑟"
2

𝑟"
	

𝜕𝐴
𝜕𝑧L

= ±
cos βe
𝑟"

= ±
1
𝑟"
cos

𝜋
2
− 𝑎𝑟𝑐𝑐𝑜𝑠

𝑟"3

𝑟"
= ∓

1
𝑟"
sin 𝑎𝑟𝑐𝑐𝑜𝑠

𝑟"3

𝑟"
	

The	sign,	once	again,	depends	on	whether	the	approach	to	the	singularity	is	from	the	positive	or	the	negative	direction.	

The	meaning	of	the	positive	direction	here	is	that	the	direction	of	𝑋,	or	whichever	coordinate	we	are	looking	at,	is	co-
directional	 with	 𝑟( − 𝑟"	 or	 opposite	 to	 it	 (i.e.	 whether	 the	 dot	 product	 of	 𝑋	 and	 𝑟( − 𝑟"	 is	 positive	 or	 negative,	
respectively),	 corresponding	 to	positive	 and	negative	directions,	 respectively,	 and	 corresponding	 to	 a	+	 or	 a	–	 in	 the	
formulae	above,	respectively.	Obviously,	when	𝑟(	and	𝑟"	are	perfectly	the	same	(within	machine	precision)	and	so	𝑟( −
𝑟"	 is	 zero,	 the	 derivative	 from	 left	 and	 from	 right	 will	 have	 different	 signs	 (because	 the	 angle	 is	 decreasing	 in	 both	
directions),	 so	 we	 just	 have	 to	 choose	 one	 of	 them,	 by	 convention,	 in	 the	 code	 (e.g.	 choose	 the	 plus	 sign).	
For	the	middle	point	𝑝(,	as	before,	the	derivative	should	be	the	minus	sum	of	the	corresponding	derivatives	for		𝑝"	and	
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𝑝L.	 This	 is	 because	moving	𝑝(	 by	 a	 small	 amount	 in	 some	direction	 is	 geometrically	 equivalent	 in	 terms	of	 the	 angle	
produced	to	moving		𝑝"	and	𝑝L	each	by	the	same	small	amount	in	the	opposite	direction.	Thus:	

𝜕𝐴
𝜕𝑥(

= −
𝜕𝐴
𝜕𝑥"

−
𝜕𝐴
𝜕𝑥L

;	
𝜕𝐴
𝜕𝑦(

= −
𝜕𝐴
𝜕𝑦"

−
𝜕𝐴
𝜕𝑦L

;	
𝜕𝐴
𝜕𝑧(

= −
𝜕𝐴
𝜕𝑧"

−
𝜕𝐴
𝜕𝑧L

	

For	the	case	where	the	angle	is	close	to	p	all	of	the	derivatives	will	be	exactly	the	negative	of	those	above.	This	can	be	
shown	by	saying	that	in	that	case	the	angle	is	𝜋 − 𝜀,	where	e	is	a	very	small	angle,	and	so	the	derivative	of	this	angle	will	
be	minus	the	derivative	of	this	small	angle,	which	is	what	we	did	above.	

	

Dihedral	angle	

The	 dihedral	 angle	 is	 merely	 an	 angle	 between	 two	 planes,	 or	 the	 angle	 between	 the	 normals	 to	 the	 two	 planes.	

Suppose	we	want	to	find	the	dihedral	angle	defined	by	points	𝑃" = 𝑥", 𝑦", 𝑧" ,	𝑃( = 𝑥(, 𝑦(, 𝑧( ,	𝑃L = 𝑥L, 𝑦L, 𝑧L ,	and	

𝑃j = 𝑥j, 𝑦j, 𝑧j .	This	will	be	the	angle	between	the	normals	to	surfaces	𝑃"𝑃(𝑃L	and	𝑃j𝑃L𝑃(,	which	are	formed	by	the	
cross	products	𝑃"𝑃(×𝑃L𝑃(	and	𝑃j𝑃L×𝑃L𝑃(.	Thus,	the	two	normals	are:	

𝑁" = 𝑦" − 𝑦( 𝑧L − 𝑧( − 𝑧" − 𝑧( 𝑦L − 𝑦( ;	 𝑧" − 𝑧( 𝑥L − 𝑥( − 𝑥" − 𝑥( 𝑧L − 𝑧( ; 	 𝑥" − 𝑥( 𝑦L − 𝑦(
− 𝑦" − 𝑦( 𝑥L − 𝑥( 	

𝑁( = 𝑦j − 𝑦L 𝑧L − 𝑧( − 𝑧j − 𝑧L 𝑦L − 𝑦( ;	 𝑧j − 𝑧L 𝑥L − 𝑥( − 𝑥j − 𝑥L 𝑧L − 𝑧( ; 	 𝑥j − 𝑥L 𝑦L − 𝑦(
− 𝑦j − 𝑦L 𝑥L − 𝑥( 	

Therefore,	we	can	treat	the	dihedral	case	as	just	an	angle	defined	by	three	points	 𝑁", 0,0,0 , 𝑁( ,	reducing	the	problem	

to	the	previous	case.	Except	that	there	are	two	 issues	to	deal	with.	One	 is	that	dihedrals	have	sign	(i.e.,	handedness),	
whereas	we	defined	angle	above	as	an	arccosine,	so	only	over	the	range	 0, 𝜋 .	The	second	is	that	to	get	the	gradient	of	
the	dihedral	with	respect	to	the	coordinates	of	its	defining	points,	we	still	have	to	apply	the	chain	rule	to	the	gradient	of	
the	above	angle,	which	would	be	with	respect	to	the	coordinates	of	𝑁"	and	𝑁(.	

We	 can	 define	 the	 sign	 based	 on	 which	 side	 of	 the	 plane	 𝑃", 𝑃(, 𝑃L 	 point	𝑃j	 maps	 onto.	 To	 do	 so,	 we	 can	 simply	

compute	the	sign	of	the	dot	product	between	the	normal	to	the	plane	 𝑃", 𝑃(, 𝑃L 	and	the	vector	𝑃L𝑃j.	So,	we	can	say	

that	 𝜎 = sign 𝑃"𝑃(×𝑃L𝑃( ∙ 𝑃L𝑃j = −sign 𝑃"𝑃(×𝑃L𝑃( ∙ 𝑃j𝑃L .	 Thus,	 we	 can	 express	 the	 dihedral	 as	 𝐷 = 𝜎 ∙

𝐴 𝑁", 0,0,0 , 𝑁( = 𝜎 ∙ 𝐴Y 𝑁", 𝑁( ,	 where	 function	𝐴Y	 is	 defined	 to	 be	 the	 same	 as	𝐴,	 except	 that	 it	 assumes	 the	

middle	point	to	be	at	the	origin	(𝐴Y	is	defined	purely	so	that	the	arguments	reflect	only	just	the	independent	variables	
and	no	constants).	

To	compute	the	partial	derivative	of	𝐷	with	respect	some	coordinate	of	one	of	the	original	four	points,	lets	call	it	𝜅,	we	
would	apply	the	chain	rule	for	multiple	variables:	

𝜕𝐷
𝜕𝜅

= 𝜎 ∙
𝜕𝐴Y
𝜕𝑁"-

𝜕𝑁"-

𝜕𝜅
+
𝜕𝐴Y
𝜕𝑁"

2
𝜕𝑁"

2

𝜕𝜅
+
𝜕𝐴Y
𝜕𝑁"3

𝜕𝑁"3

𝜕𝜅
+
𝜕𝐴Y
𝜕𝑁(-

𝜕𝑁(-

𝜕𝜅
+
𝜕𝐴Y
𝜕𝑁(

2
𝜕𝑁(

2

𝜕𝜅
+
𝜕𝐴Y
𝜕𝑁(3

𝜕𝑁(3

𝜕𝜅
	

Here	is	a	table	of	all	the	needed	derivatives	with	respect	to	all	possible	𝜅	(the	latter	are	across	the	top):	
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	 𝑥" 𝑦" 𝑧" 𝑥( 𝑦( 𝑧( 𝑥L 𝑦L 𝑧L 𝑥j 𝑦j 𝑧j
𝑁1
𝑥 0 𝑧L − 𝑧( 𝑦( − 𝑦L 0 𝑧" − 𝑧L 𝑦L − 𝑦" 0 𝑧( − 𝑧" 𝑦" − 𝑦( 0 0 0

𝑁1
𝑦 𝑧( − 𝑧L 0 𝑥L − 𝑥( 𝑧L − 𝑧" 0 𝑥" − 𝑥L 𝑧" − 𝑧( 0 𝑥( − 𝑥" 0 0 0

𝑁1
𝑧 𝑦L − 𝑦( 𝑥( − 𝑥L 0 𝑦" − 𝑦L 𝑥L − 𝑥" 0 𝑦( − 𝑦" 𝑥" − 𝑥( 0 0 0 0

𝑁2
𝑥 0 0 0 0 𝑧j − 𝑧L 𝑦L − 𝑦j 0 𝑧( − 𝑧j 𝑦j − 𝑦( 0 𝑧L − 𝑧( 𝑦( − 𝑦L

𝑁2
𝑦 0 0 0 𝑧L − 𝑧j 0 𝑥j − 𝑥L 𝑧j − 𝑧( 0 𝑥( − 𝑥j 𝑧( − 𝑧L 0 𝑥L − 𝑥(

𝑁2
𝑧 0 0 0 𝑦j − 𝑦L 𝑥L − 𝑥j 0 𝑦( − 𝑦j 𝑥j − 𝑥( 0 𝑦L − 𝑦( 𝑥( − 𝑥L 0

	

Each	independent	variable	is	in	one	column	and	only	the	non-zero	entries	in	each	column	(and	the	corresponding	terms	
in	 the	chain-rule	equation	above)	end	up	being	 involved.	Note	 that	 for	 the	 first	 three	and	the	 last	 three	 independent	
variables	(i.e.,	the	coordinates	of	the	first	and	the	fourth	points)	there	are	only	two	terms	involved,	whereas	there	are	
four	terms	for	the	middle	four	variables	(the	middle	two	points).	So,	we	can	now	compute	all	the	necessary	derivatives:	

𝜕𝐷
𝜕𝑥"

= 𝜎 ∙
𝜕𝐴Y
𝜕𝑁"

2 𝑧2 − 𝑧3 +
𝜕𝐴Y
𝜕𝑁"3

𝑦3 − 𝑦2 	

𝜕𝐷
𝜕𝑦"

= 𝜎 ∙
𝜕𝐴Y
𝜕𝑁"-

𝑧3 − 𝑧2 +
𝜕𝐴Y
𝜕𝑁"3

𝑥2 − 𝑥3 	

𝜕𝐷
𝜕𝑧"

= 𝜎 ∙
𝜕𝐴Y
𝜕𝑁"-

𝑦2 − 𝑦3 +
𝜕𝐴Y
𝜕𝑁"

2 𝑥3 − 𝑥2 	

𝜕𝐷
𝜕𝑥(

= 𝜎 ∙
𝜕𝐴Y
𝜕𝑁"

2 𝑧3 − 𝑧1 +
𝜕𝐴Y
𝜕𝑁"3

𝑦1 − 𝑦3 +
𝜕𝐴Y
𝜕𝑁(

2 𝑧3 − 𝑧4 +
𝜕𝐴Y
𝜕𝑁(3

𝑦4 − 𝑦3 	

𝜕𝐷
𝜕𝑦(

= 𝜎 ∙
𝜕𝐴Y
𝜕𝑁"-

𝑧1 − 𝑧3 +
𝜕𝐴Y
𝜕𝑁"3

𝑥3 − 𝑥1 +
𝜕𝐴Y
𝜕𝑁(-

𝑧4 − 𝑧3 +
𝜕𝐴Y
𝜕𝑁(3

𝑥3 − 𝑥4 	

	

𝜕𝐷
𝜕𝑧(

= 𝜎 ∙
𝜕𝐴Y
𝜕𝑁"-

𝑦3 − 𝑦1 +
𝜕𝐴Y
𝜕𝑁"

2 𝑥1 − 𝑥3 +
𝜕𝐴Y
𝜕𝑁(-

𝑦3 − 𝑦4 +
𝜕𝐴Y
𝜕𝑁(

2 𝑥4 − 𝑥3 	

𝜕𝐷
𝜕𝑥L

= 𝜎 ∙
𝜕𝐴Y
𝜕𝑁"

2 𝑧1 − 𝑧2 +
𝜕𝐴Y
𝜕𝑁"3

𝑦2 − 𝑦1 +
𝜕𝐴Y
𝜕𝑁(

2 𝑧4 − 𝑧2 +
𝜕𝐴Y
𝜕𝑁(3

𝑦2 − 𝑦4 	

𝜕𝐷
𝜕𝑦L

= 𝜎 ∙
𝜕𝐴Y
𝜕𝑁"-

𝑧2 − 𝑧1 +
𝜕𝐴Y
𝜕𝑁"3

𝑥1 − 𝑥2 +
𝜕𝐴Y
𝜕𝑁(-

𝑧2 − 𝑧4 +
𝜕𝐴Y
𝜕𝑁(3

𝑥4 − 𝑥2 	

𝜕𝐷
𝜕𝑧L

= 𝜎 ∙
𝜕𝐴Y
𝜕𝑁"-

𝑦1 − 𝑦2 +
𝜕𝐴Y
𝜕𝑁"

2 𝑥2 − 𝑥1 +
𝜕𝐴Y
𝜕𝑁(-

𝑦4 − 𝑦2 +
𝜕𝐴Y
𝜕𝑁(

2 𝑥2 − 𝑥4 	
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𝜕𝐷
𝜕𝑥j

= 𝜎 ∙
𝜕𝐴Y
𝜕𝑁(

2 𝑧2 − 𝑧3 +
𝜕𝐴Y
𝜕𝑁(3

𝑦3 − 𝑦2 	

𝜕𝐷
𝜕𝑦j

= 𝜎 ∙
𝜕𝐴Y
𝜕𝑁(-

𝑧3 − 𝑧2 +
𝜕𝐴Y
𝜕𝑁(3

𝑥2 − 𝑥3 	

𝜕𝐷
𝜕𝑧j

= 𝜎 ∙
𝜕𝐴Y
𝜕𝑁(-

𝑦2 − 𝑦3 +
𝜕𝐴Y
𝜕𝑁(

2 𝑥3 − 𝑥2 	

	


